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ABSTRACT 

Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA 

We present a rigorous treatment of coalition formation based on trust interactions in multi-agent systems. Current 
literature on trust in multi-agent systems primarily deals with trust models and protocols of interaction in non-
cooperative scenarios. Here, we use cooperative game theory as the underlying mathematical framework to study the 
trust dynamics between agents as a result of their trust synergy and trust liability in cooperative coalitions. We rigorously 
justify the behaviors of agents for different classes of games, and discuss ways to exploit the formal properties of these 
games for specific applications, such as unmanned cooperative control. 
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1. INTRODUCTION  

The concept of trust is something people intuitively understand, but might find difficultly grasping rationally.  People 
rely on trust whenever they need to gauge something they cannot ever know precisely with reasonable time or effort.  
But this reliance exposes them to vulnerabilities associated with betrayal.  So, on one hand, trust can be used as highly 
versatile heuristic that deals with uncertainty by reducing the complexity of expectations within arbitrary situations 
involving risk, vulnerability, and interdependence1

Trust is clearly a “double-edged sword,” but its importance in military contexts is evident.  Currently, the United States 
military wages asymmetric battles against insurgencies in Southwest Asia, where enemy combatants have exhibited 
quick and deadly adaptations to US strategies and tactics

.  On the other hand, the motivation for trust – the need to believe that 
things will behave consistently – exposes individuals to potentially undesirable outcomes. 

2

The need for trust in extreme military situations is obvious; but what may not be as obvious is the effect of trust on more 
ordinary military interactions.  Trust impacts a range of social processes between Soldiers that influence the cognitive 
and physical strain of being at war.  When the trust of a Soldier becomes lower toward other people, equipment, or 
processes, then he will likely need to exert more effort in order to resolve any perceived uncertainties.  This extra effort 
could manifest itself into a distraction that lowers the effectiveness of the Soldier at best.  However, in prolonged high 
stress situations, this additional effort could also manifest itself as a persistently guarded psychological state that 
monitors for violations of expectations and predictions. 

. One of these deadly adaptations has been the use of 
improvised explosive devices (IEDs).  Early in the Iraq and Afghanistan war efforts, IEDs were jury-rigged homemade 
bombs that, while deadly, could be avoided with increased awareness.  But insurgents quickly adapted by developing 
more sophisticated explosives, often with timing devices, pressure switches, and even wireless triggers.  In addition, 
insurgents became more difficult to detect due to their knowledge of the local terrain and their ability to mix with 
civilian populations.  Responses to more advanced IED attacks required Soldiers to put more of their trust into new 
equipment (such as up-armor vehicles, electronic jammers, and robots) as well as local allies.  And while this did not 
imply that any Soldier was any safer than before, the trust helped Soldiers deal internally with wartime uncertainties so 
that they could continue their duties and focus on mission objectives. 
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Trust can, therefore, be seen as critical survival tool for Soldiers dealing with uncertainty, whether in combat or not.  The 
effect of high trust in military settings can lessen the defensive monitoring of others, reduce in the need for hierarchical 
control, improve cooperation due to increased predictability and expectations of reciprocity, improve information 
sharing (with less need to filter unfavorable information), lower levels of conflict (friction and dissent), and improve 
group performance and processes3

2. REVIEW OF MULTI-AGENT TRUST RESEARCH 

.  Our goal here then is to determine a way to incorporate elements of trust into 
machine-based agents in an effort to realize similar emergent efficiencies, such as lower power consumption, faster 
algorithms, and the exchange of higher-quality information.  We hypothesize that machines with an ability to accurately 
evaluate trustworthiness in other agents will be able to use this knowledge to intelligently select better partners for 
cooperative activities and achieve greater cooperative payoffs over time.  Therefore, in this paper, we develop a 
theoretical framework for coalition formation based on trust interactions in multi-agent systems.  Then, we show how the 
theory could be applied to a military unmanned system – specifically the unmanned military convoy. 

This section briefly highlights prior work in multi-agent trust research and intends to present a broad range of possible 
multi-agent trust approaches.  For an extensive survey of trust research in multi-agent systems up to 2004, we urge the 
reader to examine the paper by Ramchurn, Huynh, and Jennings4

2.1 Trust Models 

.  We borrow their classification of multi-agent trust 
approaches – trust models and protocols of interaction – to present both long-standing and recent findings. 

Trust models give agents the ability to reason about the reciprocity, honesty, and reliability of other agents.  Since agents 
in a system are always assumed to have selfish interests, these models take the viewpoint of an agent trying to find the 
most reliable interaction agents from a pool of potential agents. 

Some trust model research attempts to characterize trust within non-cooperative scenarios.  Sen demonstrates how 
reciprocity can emerge when agents learn to predict the value of future benefits when competitive agents cooperate5.  
Mukherjee, Banerjee, and Sen show how trust can be acquired if agents know their opponents chosen move in advance6.  
Castelfranchi and Falcone assert that socio-cognitive models which incorporate beliefs in competence, willingness, 
persistence, and motivation are essential to determine the amount of trust each agent can place in other agents7,8,9

Other work in trust models factor in evidence to justify trust values.  Witkowski, Artikis, and Pitt propose a model 
whereby trust is based on performance in past interactions

. 

10.  Sabater and Sierra, through the REGRET system, attribute 
fuzziness to the notion of performance and adopte a sociological approach to reputation by using a weighted sum of 
subjective impressions11.  Teacy, Patel, Jennings, and Luck develop a probabilistic trust model in terms of confidence 
that expected values lie within specific error tolerances12.  Theodorakopoulos and Baras focus on evaluating trust 
evidence in ad hoc networks using the theory of semirings13.  Wang and Singh define trust in terms of belief and 
certainty, and formulate certainty in terms of evidence based on a statistical measure defined over a probability 
distribution of positive outcome probabilities14

Some work also incorporates trust models into specific applications.  Abdul-Rahman and Hailes attempt to use social 
trust characteristics and word-of-mouth to calculate trust in virtual environments

. 

15.  Zhang, Das, and Liu present a 
framework to secure data aggregation against false data injection in wireless sensor networks that exploits redundancy in 
gathered data to evaluate the trustworthiness of each sensor16.  Ballal and Lewis discuss the concept of trust consensus 
for collaborative control and show how the propagation of trust through a network can lead to a global asymptotic trust 
consensus among all agents17

2.2 Protocols of Interaction 

. 

Whereas trust models are intended to build trust at the agent-level, protocols of interaction are intended to build trust at 
the system-level.  In short, they are developed to make sure agents will gain some utility if they follow the rules – and 
lose utility if they don’t.  Thus, the rules of a system enable an agent to trust other agents by the virtue of the different 
constraints in a system. 

Multi-agent trust protocols can be divided into three main groups: truth-eliciting, reputation mechanisms, and security 
mechanisms.  Truth-eliciting protocols force agents to follow the rules, which dictate the individual steps in interactions 
and the information revealed by the agents during interactions.  By doing so, agents should find no better option than 
telling the truth.  The Vickrey-Clarke-Groves (VCG) mechanisms are an example of protocols that enforce truth-
telling18.  Reputation mechanisms force agents to interact with some trusted authority to get public ratings on other 



 

 

 

agents in a system.  Zacharia and Maes outlined some basic requirements for practical reputation mechanisms19.  For 
security in agent networks, trust is used to describe the fact that an agent can prove who they say they are.  Poslad, 
Calisti, and Charlton proposed that identity, access permissions, content integrity, and content privacy are essential for 
agents to trust each other and each other's messages transmitted across a network20.  These requirements are specified in 
the Foundation for Intelligent Physical Agents (FIPA) abstract architecture and implemented by public key encryption 
(PGP and X.509) and a certificate infrastructure21

3. CLASSES OF TRUST GAMES 

. 

This section characterizes different classes of trust games within the context of cooperative game theory.  Our 
characterizations provide the necessary conditions for a coalition trust game to be classified into a particular class.  We 
start with additive and constant-sum trust games, which have limited value for cooperative applications, but are included 
for completeness.  Then, we discuss superadditive and convex trust games, and show the necessary conditions for agents 
to form a grand coalition.  In general, grand coalition solution concepts presented here can also be applied to smaller 
coalitions within a trust game through the use of a trust subgame. 

3.1 Preliminaries 

Cooperative game theory focuses on what groups of self-interested agents can achieve.  It is not concerned with how 
agents make choices or coordinate in coalitions, and does not assume that agents will always agree to follow arbitrary 
instructions.  Rather, cooperative game theory defines games that tell how well a coalition can do for itself22

Definition: Let Γ = (𝑁, 𝑣) be a coalitional trust game with transferable utility where: 

.  And while 
the coalition is the basic modeling unit for coalition game, the theory supports modeling individual agent preferences 
without concern for their possible actions.  As such, it is an ideal framework for modeling trust-based coalition 
formation since it can show how each agent’s trust preferences can influence a group’s ability to reason about 
trustworthiness.  In essence, cooperative game theory allows us to blend the reasoning abilities of agent-level trust 
models with the system-level benefits of trust interaction protocols, forming a general concept of system-level reasoning. 

• 𝑁 is a finite set of agents, indexed by 𝑖 

• 𝑣: 2𝑁 → ℝ associates with each coalition 𝑆 ⊆ 𝑁 a real-valued payoff 𝑣(𝑆) that is distributed between the 
agents.  Singleton coalitions, by definition, are assigned no value; i.e. 𝑣(𝑖) = 0   ∀𝑖 ∈ 𝑁. 

The transferable utility assumption means that payoffs in a coalition may be freely distributed among its members.  With 
regards to payoff value of trust between agents, this assumption can be interpreted as a universal means for agents to 
mutually share the value of their trustworthy relationships.  Trust cultivation often requires reciprocity between two 
agents as a necessary behavior to develop trust, and a transferable utility is a convenient way to model the exchange for 
this notion. 

In defining a transferable payoff value of trust, one aspect to consider are the “goods of trust”.  These refer to 
opportunities for cooperative activity, knowledge, and autonomy.  In this paper, we refer to these goods as trust synergy 
𝑠(𝑆), which is a trust-based result that could not be obtained independently by two or more agents.  We may also 
interpret trust synergy as the value obtained by agents in a coalition as a result of being able to work together due to their 
attitudes of trust for each other.  In defining a set function for trust synergy, it is important to explicitly show how each 
agent’s attitude of trustworthiness for every other agent in a coalition affects this synergy.  In general, higher levels of 
trust in a coalition should produce higher levels of synergy. 

The payoff value of trust, however, also includes an opposing force in the form of vulnerability exposure, which we refer 
to as trust liability 𝑙(𝑆).  Trusting involves being optimistic that the trustee will do something for the truster; and this 
optimism is what causes the vulnerability, since it restricts the inferences a truster makes about the likely actions of the 
trustee.  However, the refusal to be vulnerable tends to undermine trust since it does not allow others to prove their own 
trustworthiness, stifling growth in trust synergy.  Thus, we see that agents in trust-based relationships with other agents 
must be aware of the balance between the values of the trust synergy and trust liability in addition to their relative 
magnitudes. 

  



 

 

 

Definition: Let the characteristic payoff function of a trust game be the difference between the trust synergy and trust 
liability of a coalition 𝑆. 

 𝑣(𝑆) = 𝑠(𝑆) − 𝑙(𝑆) (1) 

This payoff is similar to the well-known constrained coalitional game (CCG) that incorporates gains from cooperation 
with the costs due to communications network restrictions23

3.2 Additive Trust Game 

.  However, the characteristic function 𝑣 in CCGs is defined 
on the structure of a particular communications network between agents, whereas the characteristic function for our trust 
game is defined only on a set of agents.  As such, agents who are completely disconnected from communication with 
other agents can still theoretically maintain membership in the same trust-based coalition. 

Additive games are considered inessential games in cooperative game theory since the value of the union of two disjoint 
coalitions (𝑆1 ∩ 𝑆2 = ∅) is equivalent to the sum of the values of each coalition. 

 𝑣(𝑆1 ∪ 𝑆2) = 𝑣(𝑆1) + 𝑣(𝑆2)   ∀𝑆1, 𝑆2 ⊂ 𝑁 (2) 

In (2), we see that the total value of the trust relationships between any two disjoint coalitions must always be zero.  In 
other words, the trust synergy between any two disjoint coalitions must always result in a value that is equal to their trust 
liability.  Thus, by expanding this definition for trust games and rearranging the terms, we can characterize an additive 
trust game as: 

 𝑠(𝑆1 ∪ 𝑆2) − 𝑙(𝑆1 ∪ 𝑆2) = 𝑠(𝑆1) − 𝑙(𝑆1) + 𝑠(𝑆2) − 𝑙(𝑆2)   {∀𝑆1, 𝑆2 ⊂ 𝑁: 𝑆1 ∩ 𝑆2 = ∅} 

𝑠(𝑆1 ∪ 𝑆2) − 𝑠(𝑆1) − 𝑠(𝑆2) = 𝑙(𝑆1 ∪ 𝑆2) − 𝑙(𝑆1) − 𝑙(𝑆2)   {∀𝑆1, 𝑆2 ⊂ 𝑁: 𝑆1 ∩ 𝑆2 = ∅} 

(3) 

(4) 

3.3 Constant-Sum Trust Game 

In constant-sum games, the sum of all coalition values in 𝑁 remains the same, regardless of any outcome. 

 𝑣(𝑁) = 𝑣(𝑆) + 𝑣(𝑁\𝑆) = 𝑘   ∀𝑆 ⊂ 𝑁 (5) 

By expanding this definition for trust games and rearranging the terms, we can see that the constant-sum trust game is a 
special case of a two-coalition additive trust game involving every agent in the game. 

 𝑠(𝑁) − 𝑙(𝑁) = 𝑠(𝑆) − 𝑙(𝑆) + 𝑠(𝑁\𝑆) − 𝑙(𝑁\𝑆)   ∀𝑆 ⊂ 𝑁 

𝑠(𝑁) − 𝑠(𝑆) − 𝑠(𝑁\𝑆) = 𝑙(𝑁) − 𝑙(𝑆) − 𝑙(𝑁\𝑆)   ∀𝑆 ⊂ 𝑁 

(6) 

(7) 

Definition: An agent is a dummy agent if the amount the agent contributes to any coalition is exactly the amount that it 
is able to achieve alone. 

Theorem 1: Γ is a constant-sum trust game implies that Γ is a zero-sum trust game. 

Proof: If Γ is a constant-sum game, then by (7), the following constraint for singleton coalitions must always hold: 

 𝑠(𝑁) − 𝑠(𝑖) − 𝑠(𝑁\𝑖) = 𝑙(𝑁) − 𝑙(𝑖) − 𝑙(𝑁\𝑖)   ∀𝑖 ∈ 𝑁 (8) 

By rearranging the terms, combining, and substituting, we get: 

 𝑠(𝑁) − 𝑙(𝑁) = 𝑠(𝑖) − 𝑙(𝑖) + 𝑠(𝑁\𝑖) − 𝑙(𝑁\𝑖)  ∀𝑖 ∈ 𝑁 

𝑣(𝑁) = 𝑣(𝑖) + 𝑣(𝑁\𝑖)   ∀𝑖 ∈ 𝑁 

𝑣(𝑁) = 𝑣(𝑁\𝑖)   ∀𝑖 ∈ 𝑁 

(9) 

(10) 

(11) 



 

 

 

The result in (11) implies that every agent in 𝑁 must behave like a dummy agent if Γ is a constant-sum trust game.  
Since all agents behave like dummy agents and 𝑣(𝑖) = 0 for all 𝑖 ∈ 𝑁, then any coalition that forms in Γ will have no 
value.  Hence, the value of the grand coalition is zero (i.e. 𝑣(𝑁) = 𝑘 = 0).  Therefore, the only possible constant-sum 
trust game is the zero-sum trust game.  This completes the proof. 

Corollary 1:

Proof:  If 𝑠(𝑆) = 𝑙(𝑆)  ∀𝑆 ⊂ 𝑁, then 𝑣(𝑆) = 0  ∀𝑆 ⊂ 𝑁.  Thus, by (5), 𝑣(𝑁) = 𝑣(𝑁\𝑆) = 𝑘   ∀𝑆 ⊂ 𝑁.  This result in 
implies that every possible coalition in 𝑁 must behave like a coalition of dummy agents in a constant-sum trust game 
and their combinations with other coalitions will yield no value.  Hence, the value of the grand coalition is always zero 
(i.e. 𝑣(𝑁) = 𝑘 = 0).  This completes the proof. 

 Γ is a zero-sum trust game if 𝑠(𝑆) = 𝑙(𝑆)  ∀𝑆 ⊂ 𝑁. 

Our proofs show that any constant-sum trust game is necessarily a zero-sum trust game that represents a special case of 
an additive trust game.  These facts reinforce a notion that a group of agents who do not trust each other will always 
prefer to work as singleton coalitions.  And even if there is some mutual trust between agents, gains from trust synergy 
are always lost to the trust liability, making it irrational to form any coalition with any other agent.  Thus, if one 
determines that Γ is a constant-sum trust game, then this provides immediate justification for using non-cooperative 
game theory as the basis for modeling the purely competitive agents within the game since there is no payoff from 
cooperative activity. 

3.4 Superadditive Trust Game 

In a superadditive game, the value of the union of two disjoint coalitions (𝑆1 ∩ 𝑆2 = ∅) is never less than the sum of the 
values of each coalition. 

 𝑣(𝑆1 ∪ 𝑆2) ≥ 𝑣(𝑆1) + 𝑣(𝑆2)   ∀𝑆1, 𝑆2 ⊂ 𝑁 (12) 

This implies a monotonic increase in the value of any coalition as the coalition gets larger. 

 𝑆 ⊆ 𝐴 ⊆ 𝑁 → 𝑣(𝑆) ≤ 𝑣(𝐴) ≤ 𝑣(𝑁) (13) 

This property of superadditivity tells us that the new links that are established between the agents in the two disjoint 
coalitions are the sources of the monotonic increases.  This results in a snowball effect that causes all agents in the game 
to form the grand coalition (a coalition containing all agents in the game) since the total value of the new trust 
relationships between any two disjoint coalitions must always be positive semi-definite.  In other words, the trust 
synergy between any two disjoint coalitions must always result in a value that is at least as large as their trust liability.  
Thus, by expanding (12) for trust games and rearranging the terms, we can characterize a superadditive trust game as: 

 𝑠(𝑆1 ∪ 𝑆2) − 𝑙(𝑆1 ∪ 𝑆2) ≥ 𝑠(𝑆1) − 𝑙(𝑆1) + 𝑠(𝑆2) − 𝑙(𝑆2)   {∀𝑆1, 𝑆2 ⊂ 𝑁: 𝑆1 ∩ 𝑆2 = ∅} 

𝑠(𝑆1 ∪ 𝑆2) − 𝑠(𝑆1) − 𝑠(𝑆2) ≥ 𝑙(𝑆1 ∪ 𝑆2) − 𝑙(𝑆1) − 𝑙(𝑆2)   {∀𝑆1, 𝑆2 ⊂ 𝑁: 𝑆1 ∩ 𝑆2 = ∅} 

(14) 

(15) 

3.5 Convex Trust Game 

A game is convex if it is supermodular, and this trivially implies superadditivity (when 𝑆1 ∩ 𝑆2 = ∅).  Thus, we see that 
convexity is a stronger condition than superadditivity since the restriction that two coalitions must be disjoint no longer 
applies. 

 𝑣(𝑆1 ∪ 𝑆2) + 𝑣(𝑆1 ∩ 𝑆2) ≥ 𝑣(𝑆1) + 𝑣(𝑆2)   ∀𝑆1, 𝑆2 ⊂ 𝑁 (16) 

In convex games, the incentives of joining a coalition grow as the coalition gets larger.  This means that the marginal 
contribution of each agent 𝑖 ∈ 𝑁 is non-decreasing. 

 𝑣(𝑆 ∪ 𝑖) − 𝑣(𝑆) ≤ 𝑣(𝐴 ∪ 𝑖) − 𝑣(𝐴) whenever 𝑆 ⊂ 𝐴 ⊂ 𝑁\𝑖 (17) 

Definition: A subgame 𝑣𝑅: 2𝑅 → ℝ, where 𝑅 ⊆ 𝑁 is not empty, is defined as 𝑣𝑅(𝑆) = 𝑣(𝑆) for each 𝑆 ⊆ 𝑁.  In general, 
solution concepts that apply to a grand coalition can also apply to smaller coalitions in terms of a subgame. 



 

 

 

Definition: Given a game Γ = (𝑁, 𝑣) and a coalition 𝑅 ⊆ 𝑁, the R-marginal game 𝑣𝑅: 2𝑁\𝑅 → ℝ is defined by   𝑣𝑅(𝑆) =
𝑣(𝑅 ∪ 𝑆) − 𝑣(𝑅) for each 𝑆 ⊆ 𝑁\𝑅. 

Using these definitions, Branzei, Dimitrov, and Tijs proved that a game is convex if and only all of its marginal games 
are superadditive24

Theorem 2: A game Γ = (𝑁, 𝑣) is convex if and only if for each 𝑅 ∈ 2𝑁 the R-marginal game (𝑁\𝑅, 𝑣𝑅) is 
superadditive. 

.  We provide their proof here as a means for the reader to readily justify this assertion. 

Proof: 

(i) Suppose (𝑁, 𝑣) is convex.  Let 𝑅 ⊆ 𝑁 and 𝑆1, 𝑆2 ⊆ 𝑁\𝑅.  Then: 

 𝑣𝑅(𝑆1 ∪ 𝑆2) + 𝑣𝑅(𝑆1 ∩ 𝑆2) (18) 

 = 𝑣(𝑅 ∪ 𝑆1 ∪ 𝑆2) + 𝑣(𝑅 ∪ (𝑆1 ∩ 𝑆2)) − 2𝑣(𝑅)  

 = 𝑣�(𝑅 ∪ 𝑆1) ∪ (𝑅 ∪ 𝑆2)� + 𝑣�(𝑅 ∪ 𝑆1) ∩ (𝑅 ∪ 𝑆2)� − 2𝑣(𝑅)  

 ≥ 𝑣(𝑅 ∪ 𝑆1) + 𝑣(𝑅 ∪ 𝑆2) − 2𝑣(𝑅) (19) 

 = �𝑣(𝑅 ∪ 𝑆1) − 𝑣(𝑅)� + �𝑣(𝑅 ∪ 𝑆2) − 𝑣(𝑅)�  

 = 𝑣𝑅(𝑆1) + 𝑣𝑅(𝑆2)  

where the inequality follows from the convexity of 𝑣.  Hence, 𝑣𝑅 is convex (and superadditive as well). 

(ii) Let 𝑆1, 𝑆2 ⊆ 𝑁 and 𝑅 = 𝑆1 ∩ 𝑆2.  Suppose that for each 𝑅 ∈ 2𝑁, the game (𝑁\𝑅, 𝑣𝑅) is superadditive.  If 𝑅 = ∅, then 
the game (𝑁\∅, 𝑣∅) = (𝑁, 𝑣) and 𝑣(∅) = 0; hence, Γ is superadditive.  If 𝑅 ≠ ∅, then because (𝑁\𝑅, 𝑣𝑅) is 
superadditive: 

 𝑣𝑅((𝑆1 ∪ 𝑆2)\𝑅) ≥ 𝑣𝑅(𝑆1\𝑅) + 𝑣𝑅(𝑆2\𝑅) (20) 

 𝑣(𝑆1 ∪ 𝑆2) − 𝑣(𝑅) ≥  𝑣(𝑆1) − 𝑣(𝑅) + 𝑣(𝑆2) − 𝑣(𝑅) (21) 

 𝑣(𝑆1 ∪ 𝑆2) + 𝑣(𝑅) ≥  𝑣(𝑆1) + 𝑣(𝑆2) (22) 

 𝑣(𝑆1 ∪ 𝑆2) + 𝑣(𝑆1 ∩ 𝑆2) ≥  𝑣(𝑆1) + 𝑣(𝑆2) (23) 

This completes the proof. 

By using this characterization in Theorem 2 and expanding it to our definition of a trust game, we can state a necessary 
requirement to produce a convex trust game: that the marginal trust synergy between any two coalitions must always 
result in a value that is at least as large as their marginal trust liability. 

 𝑠𝑅((𝑆1 ∪ 𝑆2)\𝑅) − 𝑙𝑅((𝑆1 ∪ 𝑆2)\𝑅) ≥ 𝑠𝑅(𝑆1\𝑅) − 𝑙𝑅(𝑆1\𝑅) + 𝑠𝑅(𝑆2\𝑅) − 𝑙𝑅(𝑆2\𝑅) 

{∀𝑆1, 𝑆2 ⊂ 𝑁:𝑆1 ∩ 𝑆2 = 𝑅} 

𝑠𝑅((𝑆1 ∪ 𝑆2)\𝑅) − 𝑠𝑅(𝑆1\𝑅) − 𝑠𝑅(𝑆2\𝑅) ≥ 𝑙𝑅((𝑆1 ∪ 𝑆2)\𝑅) − 𝑙𝑅(𝑆1\𝑅) − 𝑙𝑅(𝑆2\𝑅) 

{∀𝑆1, 𝑆2 ⊂ 𝑁:𝑆1 ∩ 𝑆2 = 𝑅} 

(24) 

 

(25) 

Convex games are convenient due to several nice, well-known properties. 

• The core of a convex game is never empty. 

• Convex games are totally balanced, meaning that their subgames are also convex, each with a non-empty core. 



 

 

 

• Convex games have a stable set that coincide with its core. 

• The Shapley value of a convex game is the barycenter of the core. 

• The vertices of a core can be found in polynomial time using a polyhedron greedy algorithm25

4. A PRACTICAL MODEL FOR TRUST GAMES 

. 

In the previous section, we characterized different classes of trust games without explicitly defining a trust game model.  
In this section, we provide a general model for trust games that conforms to the theoretical constructions in the previous 
section and can be adapted to a wide variety of applications. 

4.1 Managing Agent Trust Preferences 

The attitude of trustworthiness agents have toward other agents in a trust game is managed in an |𝑁| × |𝑁| matrix 𝑇. 

 
𝑇 = �𝑡𝑖,𝑗�|𝑁|×|𝑁|

= �
𝑡𝑖,𝑗 = 1,         
𝑡𝑖,𝑗 ∈ [0,1],   

𝑖 = 𝑗
𝑖 ≠ 𝑗

� 
(26) 

This matrix is populated with values 𝑡𝑖,𝑗 that represent the probability that agent 𝑗 is trustworthy from the perspective of 
agent 𝑖.  The values 𝑡𝑖,𝑗 can also be interpreted as the probabilities that agent 𝑖 will allow agent 𝑗 to interact with him, 
since rational agents would prefer to interact with more trustworthy agents. 

The manner in which 𝑡𝑖,𝑗 is evaluated depends on an underlying trust model.  We make no assumption about the use of a 
particular trust model, as the choice of an appropriate model may be application-specific.  We also make no assumption 
about the spatial distribution of the agents in a game – therefore, this matrix should not necessarily imply the structure of 
a communications graph. 

4.2 Modeling Trust Synergy and Trust Liability 

We provide a general model for trust synergy and trust liability that can be adapted for a variety of applications.  Our 
model makes use of a symmetric matrix Σ to manage potential trust synergy and a matrix Λ to manage potential trust 
liability.  Σ is symmetric because we assume that agents mutually agree on the benefits of a synergetic interaction. 

 
Σ = �𝜎𝑖,𝑗�|𝑁|×|𝑁|

= �
𝜎𝑖,𝑗 = 0,               
𝜎𝑖,𝑗 = 𝜎𝑗,𝑖 ≥ 0,   

𝑖 = 𝑗
𝑖 ≠ 𝑗

� 
(27) 

 
Λ = �𝜆𝑖,𝑗�|𝑁|×|𝑁|

= �
𝜆𝑖,𝑗 = 0,               
𝜆𝑖,𝑗 ≥ 0,              

𝑖 = 𝑗
𝑖 ≠ 𝑗

� 
(28) 

As with the 𝑇 matrix, we make no assumptions about how Σ and Λ are calculated, since the meaning of their values may 
depend on the application.  For example, the calculations for 𝜎𝑖,𝑗 and 𝜆𝑖,𝑗 between two agents may not only take into 
account each agent’s individual intrinsic attributes – it may also factor in externalities (i.e. political climate, weather 
conditions, pre-existing conditions, etc.) that neither agent has direct control over. 

Definition: The total value of the trust synergy in a coalition is defined as the following set function: 

 𝑠(𝑆) = � 𝜎𝑖,𝑗
𝑖,𝑗∈𝑆

𝑡𝑖,𝑗𝑡𝑗,𝑖      ∀𝑖 > 𝑗 (29) 

Trust synergy is the value obtained by agents in a coalition as a result of being able to work together due to their 
attitudes of trust for each other.  The set function 𝑠(𝑆) assumes that the events “agent 𝑖 allows agent 𝑗 to interact” and 
“agent 𝑗 allows agent  𝑖 to interact” are independent.  This is reasonable since agents are assumed to behave as 
independent entities within a trust game (i.e. no agent is controlled by any other agent).  Therefore, we treat the product 
𝑡𝑖,𝑗𝑡𝑗,𝑖 as the relative strength of a trust-based synergetic interaction, which justifies the use of the summation.  The value 
for 𝜎𝑖,𝑗 serves as a weight for a trust-based synergetic interaction. 



 

 

 

Definition: The total value of the trust liability in a coalition is defined as the following set function: 

 𝑙(𝑆) = � 𝜆𝑖,𝑗𝑡𝑖,𝑗
𝑖,𝑗∈𝑆

          ∀𝑖 ≠ 𝑗 (30) 

Trust liability can be thought of as the vulnerability that agents in a coalition expose themselves to due to their attitudes 
of trust for each other.  We treat the product 𝜆𝑖,𝑗𝑡𝑖,𝑗 as a measure for agent 𝑖’s exposure to unfavorable trust-based 
interactions from agent 𝑗.  A high amount of trust can expose agents to high levels of vulnerability.  But each agent can 
regulate its exposure to trust liability by adjusting 𝑡𝑖,𝑗.  Changes to 𝑡𝑖,𝑗, however, also influence the benefits of trust 
synergy. 

4.3 Modeling the Trust Game 

Definition: From (1), we define the trust game (also known as the total value of the trust payoff in a coalition) as the 
difference between its trust synergy and trust liability. 

 𝑣(𝑆) = � 𝜎𝑖,𝑗
𝑖,𝑗∈𝑆
∀𝑖>𝑗

𝑡𝑖,𝑗𝑡𝑗,𝑖 − � 𝜆𝑖,𝑗𝑡𝑖,𝑗
𝑖,𝑗∈𝑆
∀𝑖≠𝑗

 (31) 

 
𝑣(𝑆) = � 𝑡𝑖,𝑗𝑡𝑗,𝑖 �𝜎𝑖,𝑗 −

𝜆𝑖,𝑗
𝑡𝑗,𝑖

−
𝜆𝑗,𝑖

𝑡𝑖,𝑗
�

𝑖,𝑗∈𝑆
∀𝑖>𝑗

 
(32) 

The factorization in (32) shows us that the first factor (𝑡𝑖,𝑗𝑡𝑗,𝑖) will always be greater than or equal to zero while the 
second factor can be either positive or negative.   Hence, by isolating the second factor and recognizing that trust values 
equal to 1 produce the smallest possible reduction in the second factor, we can state the condition that guarantees the 
potential for two agents to form a trust-based pair coalition. 

Proposition 1: Any two agents 𝑖, 𝑗 ∈ 𝑁 will never form a trust-based pair coalition if 𝜎𝑖,𝑗 < 𝜆𝑖,𝑗 + 𝜆𝑗,𝑖.  Otherwise, the 
potential exists for agent 𝑖 and 𝑗 to form a trust-based pair coalition. 

Proposition 2: If two agents can never form a trust-based pair coalition, then the best strategy for both agents is to never 
trust each other (i.e. 𝑡𝑖,𝑗 = 𝑡𝑗,𝑖 = 0). 

In general, proposition 1 does not extend to trust-based coalitions larger than two due to the complex coupling of trust 
dynamics between different agents as coalitions grow larger.  For example, two agents who may produce a negative trust 
payoff value as a pair may actually realize a positive trust payoff with the addition of a third agent.  This situation occurs 
if both agents have positive trust relationships with the third agent that outweighs their own negative trust relationship.  
Such a situation is common in real world scenarios, and justifies the importance of various trusted third parties, such as 
escrow companies, website authentication services, and couples therapists. 

In light of this, we can mathematically justify a condition similar to proposition 1 that is valid for coalitions of any size – 
but only for a special type of trust game. 

Theorem 3: A trust-based coalition 𝑆 ⊆ 𝑁 will never form if: 

 
� 𝜎𝑖,𝑗
𝑖,𝑗∈𝑆
∀𝑖>𝑗

< �
𝜆𝑖,𝑗
𝑡𝑗,𝑖𝑖,𝑗∈𝑆

∀𝑖≠𝑗

 

�∀𝑖, 𝑗 ∈ 𝑆: 𝑡𝑖,𝑗𝑡𝑗,𝑖 = 𝑘� 

(33) 

  



 

 

 

Proof: Let 𝑆 ⊆ 𝑁 and 𝑡𝑖,𝑗𝑡𝑗,𝑖 = 𝑘 for all 𝑖, 𝑗 ∈ 𝑆.  Then, by substituting 𝑘 into (31): 

 
𝑣(𝑆) = � 𝜎𝑖,𝑗

𝑖,𝑗∈𝑆
∀𝑖>𝑗

𝑘 − �
𝜆𝑖,𝑗
𝑡𝑗,𝑖

𝑘
𝑖,𝑗∈𝑆
∀𝑖≠𝑗

 
(34) 

 

𝑣(𝑆) = 𝑘

⎝

⎜
⎛
� 𝜎𝑖,𝑗
𝑖,𝑗∈𝑆
∀𝑖>𝑗

− �
𝜆𝑖,𝑗
𝑡𝑗,𝑖𝑖,𝑗∈𝑆

∀𝑖≠𝑗 ⎠

⎟
⎞

 

(35) 

Because 𝑘 is a constant that is always greater than or equal to zero, we can clearly see that the second factor affects 
whether or not 𝑣(𝑆) is positive or negative.  Hence, if the second term in the second factor is larger than the first term, 
then a coalition 𝑆 will never form.  This completes the proof. 

4.4 Incorporating Context into a Trust Game 

In practice, trust is often defined relative to some context.  Context allows individuals to simplify complex decision-
making scenarios by focusing on more narrow perspectives of situations or others, avoiding the potential for 
inconvenient paradoxes. 

Coalitional trust games can also be defined relative to different contexts using the multi-issue representation26

Definition: A multi-issue representation is composed of a collection of coalitional games, each known as an issue, 
(𝑁1, 𝑣1), (𝑁2, 𝑣2),⋯ , (𝑁𝑘 , 𝑣𝑘), which together constitute the coalitional game (𝑁, 𝑣) where  

, where we 
use the words “context” and “issue” interchangeably. 

• 𝑁 = 𝑁1 ∪ 𝑁2 ∪ ⋯∪ 𝑁𝑘 

• For each coalition 𝑆 ⊆ 𝑁, 𝑣(𝑆) = ∑ 𝑣𝑖(𝑆 ∩ 𝑁𝑖)𝑘
𝑖=1  

This approach allows us to define an arbitrarily complex trust game that can be easily decomposed into simpler trust 
games relative to a particular context.  A set of agents in one context can overlap partially or complete with another set 
of agents in another context.  And one can choose to treat the coalitional game in one big context, or the union of any 
number of contexts based on some decision criteria. 

5. APPLYING A TRUST GAME TO UNMANNED COOPERATIVE CONTROL 

In this section, we apply a coalitional trust game in a specific unmanned 
cooperative control application: the unmanned military convoy.  Currently, 
the United States Army Tank Automotive Research, Development, and 
Engineering Center is funding the Convoy Active Safety Technology 
(CAST) program, which aims to improve convoy operations with the 
installation of a small kit in the cab of a tactical vehicle27

We begin with a simple convoy scenario that models a four-vehicle 
convoy, 𝑁 = {1,2,3,4}, which intends to move together in a single file.  
The value of each index into 𝑁 represents the vehicle’s position in the 
convoy.  For this scenario, we interpret the trust synergy in coalition to represent the vehicles in the coalition moving 
forward.  Thus, we set the values in the trust synergy matrix Σ equal to the number of vehicles that will move forward if 
the two vehicles are moving forward (inclusive of the two vehicles).  We interpret the trust liability in coalition to 
represent the vulnerability of vehicles in the coalition to stop moving.  Thus, we set the values in the trust liability matrix 

.  The kit connects 
actuators to the steering wheel, gas pedal, and brake pedal, and uses various 
sensors, such as RADAR, LIDAR, and electro-optical/infrared cameras, to 
sense a vehicle’s environment and safely drive the vehicle.  Our goal with 
the trust game is to understand how trust-based coalitions will form under 
different attitudes of trust in a convoy scenario. Tactical wheeled vehicles equipped 

with Convoy Active Safety 
Technology (CAST) 



 

 

 

Λ equal to the number of vehicles can prevent a particular vehicle from moving forward in a vehicle coalition pair. Note 
that in a more realistic unmanned convoy trust game, the values in Σ and Λ could be based on additional factors, such as 
the presence of hostile forces, the smoothness of the road, the time of day, weather conditions, vehicle reliability, or 
mission importance. 

Definition: The values in Σ and Λ for a 4-convoy trust game are: 

 

Σ = �

0 2 3 4
2 0 3 4
3 3 0 4
4 4 4 0

   �      Λ = �

0 0 0 0
1 0 1 1
2 2 0 2
3 3 3 0

� 
(36) 

First, let us analyze this game as an additive trust game.  While there are infinitely many solutions for 𝑇 that conform to 
(4), the most obvious solution is the extreme situation where no vehicle trusts any other vehicle – or, when 𝑇 is the 
identity matrix (𝑇 = 𝐼).  In this case, it can clearly be seen from (31) that no vehicle will ever affect another vehicle, 
either positively or negatively.  Thus, each vehicle will ultimately form a singleton coalition and fail to work 
cooperatively with any other vehicle. 

Next, let us analyze another extreme situation where every vehicle completely trusts every other vehicle – or, when 
𝑇 = [1]4×4.  As such, we can enumerate the trust payoff values for each possible coalition. 

 𝑣({1,2}) = 1;     𝑣({1,3}) = 1;     𝑣({1,4}) = 1;     𝑣({2,3}) = 0;     𝑣({2,4}) = 0;     𝑣({3,4}) = −1; 

𝑣({1,2,3}) = 2;     𝑣({1,2,4}) = 2;     𝑣({1,3,4}) = 1;     𝑣({2,3,4}) = −1;     𝑣({1,2,3,4}) = 2;  

(37) 

The results in (37) provide us an interesting insight, in that all vehicles behind the lead vehicle find higher values of trust 
payoff with the lead vehicle than with the nearest vehicle.  As such, as long as the lead vehicle is a member of a trust-
based coalition in this game, there will be no incentive for any other vehicle to abandon the coalition.  Thus, the vehicles 
ultimately form the grand coalition.  Note, however, that the formation of a grand coalition does not imply that the trust 
game is superadditive or convex.  This assertion is justified with the observation that 𝑣({3,4}) ≱ 𝑣({3}) + 𝑣({4}) = 0. 

In order to form a convex 4-convoy trust game, we must satisfy the conditions in (25), which ensure that all trust payoff 
values in any coalition are at least large as any sub-coalition.  While there are infinitely many solutions for 𝑇 that 
conform to (25), the games with the highest trust payoff have either one of the following trust matrices: 

 

𝑇1 = �

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

   �     𝑇2 = �

1 1 1 1
1 1 0 1
1 0 1 0
1 1 0 1

   �     𝑇3 = �

1 1 1 1
1 1 1 0
1 1 1 0
1 0 0 1

   �     𝑇4 = �

1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 1

   � 
(38) 

𝑇1, 𝑇2, 𝑇3, and 𝑇4 are modified versions of [1]4×4 and all produce the same results in the trust payoff value function.  The 
main modification ensures that vehicles 3 and 4 have no trust toward each other since the trust liabilities between them 
always outweigh their trust synergies.  The following is the enumeration of the trust payoff values for the 4-convoy trust 
game with the highest trust payoff: 

 𝑣({1,2}) = 1;     𝑣({1,3}) = 1;     𝑣({1,4}) = 1;     𝑣({2,3}) = 0;     𝑣({2,4}) = 0;     𝑣({3,4}) = 0; 

𝑣({1,2,3}) = 2;     𝑣({1,2,4}) = 2;     𝑣({1,3,4}) = 2;     𝑣({2,3,4}) = 0;     𝑣({1,2,3,4}) = 3;  

(39) 

The deep insight we gain from analyzing (38) and the results in (39) is that all vehicles behind the lead vehicle need only 
trust the lead vehicle in the convoy to move forward, provided the lead vehicle trusts every other vehicle to follow it.  
This echoes the intuition seen in Jean-Jacques Rousseau’s classic “stag hunt” game, where there is no incentive for any 
player to cheat by not cooperating as long as each player can trust others to do the same.  This type of game differs from 
the well-known “prisoners’ dilemma” game, where the dominant strategy is to confess and not cooperate with any other 
player28. 



 

 

 

Personal experience suggests that drivers in convoy-like traffic patterns rarely place large amounts of trust in 
neighboring drivers, as our model corroborates.  In the event a driver becomes stuck in a giant traffic jam, he likely will 
not feel betrayed by the driver directly in front.  Instead, he will unconsciously begin gauging the coalitional value of the 
traffic jam by considering his level of trust in the lead driver in the traffic jam, whether in visible range or not.  In most 
cases, the driver monitors the traffic flow or listens to traffic reports to gauge his trust for the lead driver.  He may also 
unconsciously consider other drivers in the traffic jam and estimate their trust perceptions of the traffic jam to gauge the 
coalition’s value.  In the event a driver cannot accurately gauge the value of the traffic jam, he may choose to leave the 
traffic jam and attempt to join another traffic coalition with a higher payoff value.  These types of driver behaviors are 
generally not performed when the trust for the lead driver to move forward is high.  Yet, these behaviors feel necessary 
when the trust lessens since they attempt to resolve coalitional or environmental uncertainties. 

For unmanned military convoys, our results suggest that follower vehicles need only communicate with the lead vehicle 
to ensure trustworthy cooperation.  The lead vehicle needs only to broadcast pertinent information to the followers, and 
the followers need only to acknowledge receiving the information from the lead to signal agreement.  This hub-and-
spoke communications network would therefore foster the reciprocity necessary to cultivate trust between the leader and 
its followers while also keeping the computational complexity of the network to a minimum of 𝑂(𝑛).  The presence of 
the solution 𝑇4 suggests that trust-based redundancy can be achieved with the second vehicle in the event of a 
catastrophic failure to the lead vehicle.  The cost of the trust-based redundancy would require an additional (|𝑁| − 2) 
point-to-point connections, but the computational complexity would not change. 

We conclude this section by generalizing the convoy trust game for any number of vehicles and prove the solution for 
the highest payoff trust-based coalition.  Our proof shows that all vehicles behind the lead vehicle in a convoy need only 
trust the lead vehicle, and no other vehicle, to move forward so long as the lead vehicle trusts every other vehicle to 
follow it. 

Definition: The values in Σ and Λ for a convoy trust game with |𝑁| vehicles are: 

 
Σ = �𝜎𝑖,𝑗�|𝑁|×|𝑁|

= �
       

𝜎𝑖,𝑗 = 0,                   𝑖 = 𝑗
𝜎𝑖,𝑗 = max({𝑖, 𝑗}) , 𝑖 ≠ 𝑗

� 
(40) 

 
Λ = �𝜆𝑖,𝑗�|𝑁|×|𝑁|

= �
𝜆𝑖,𝑗 = 0,                        
𝜆𝑖,𝑗 = 𝑖 − 1,                 

𝑖 = 𝑗
𝑖 ≠ 𝑗

� 
(41) 

Theorem 4: The convoy trust game that produces the grand coalition with highest payoff value has a trust matrix that 
conforms to the following construction: 

 

𝑇 = �𝑡𝑖,𝑗�|𝑁|×|𝑁|
=

⎩
⎪
⎨

⎪
⎧
𝑡𝑖,𝑗 = 1,                 𝑖 = 𝑗                             
𝑡𝑖,𝑗 = 1,                 𝑖 ≠ 𝑗, min({𝑖, 𝑗}) = 1
𝑡𝑖,𝑗 = 𝑡𝑗,𝑖 ∈ {0,1}, 𝑖 ≠ 𝑗, min({𝑖, 𝑗}) = 2
𝑡𝑖,𝑗 = 0,                 𝑖 ≠ 𝑗, min({𝑖, 𝑗}) > 2                        

� 

(42) 

Proof: 

Suppose we generalize the values in Σ and Λ according to (40) and (41), respectively.  According to proposition 1, two 
agents 𝑖, 𝑗 ∈ 𝑁 will never form a trust-based coalition pair if 𝜎𝑖,𝑗 < 𝜆𝑖,𝑗 + 𝜆𝑗,𝑖.  Thus, by substitution: 

 max({𝑖, 𝑗}) < (𝑖 − 1) + (𝑗 − 1) (43) 

 max({𝑖, 𝑗}) < 𝑖 + 𝑗 − 2 (44) 

We see that if 𝑖 is the maximum value, then 0 < 𝑗 − 2.  Similarly, if 𝑗 is the maximum value, then 0 < 𝑖 − 2.  Thus, the 
inequality in (44) tells us that any vehicle behind the second vehicle will never form a trust-based coalition with any 
other vehicle behind the second vehicle.  Therefore, by proposition 2, the best strategy for these vehicles is to have no 
trust for each other; hence 𝑡𝑖,𝑗 = 0 when min({𝑖, 𝑗}) > 2 for 𝑖 ≠ 𝑗. 



 

 

 

Since the result in (44) implies that trust-based coalition formation is possible with the lead vehicle and the second 
vehicle, we must analyze the trust payoff values for coalitions with these vehicles.  Using (32) and our definitions in (40) 
and (41), the trust payoff values for a coalition in the convoy trust game is: 

 
𝑣(𝑆) = � 𝑡𝑖,𝑗𝑡𝑗,𝑖 �max({𝑖, 𝑗}) −

𝑖 − 1
𝑡𝑗,𝑖

−
𝑗 − 1
𝑡𝑖,𝑗

�
𝑖,𝑗∈𝑆
∀𝑖>𝑗

 
(45) 

From (45), we define trust payoff values for any pair of vehicles as: 

 
𝑣({𝑖, 𝑗}) = 𝑡𝑖,𝑗𝑡𝑗,𝑖 �max({𝑖, 𝑗}) −

𝑖 − 1
𝑡𝑗,𝑖

−
𝑗 − 1
𝑡𝑖,𝑗

� 
(46) 

Let us first analyze coalition formation with the lead vehicle.  If 𝑖 = 1, then max({𝑖, 𝑗}) = 𝑗.  Therefore, the payoff value 
for a pair coalition between 𝑖 and 𝑗 is: 

 
𝑣({1, 𝑗}) = 𝑡1,𝑗𝑡𝑗,1 �𝑗 −

𝑗 − 1
𝑡1,𝑗

� 
(47) 

 𝑣({1, 𝑗}) = 𝑗𝑡1,𝑗𝑡𝑗,1 − 𝑗𝑡𝑗,1 + 𝑡𝑗,1 (48) 

 𝑣({1, 𝑗}) = 𝑡𝑗,1�𝑗𝑡1,𝑗 − 𝑗 + 1� (49) 

The result in (49) show that the highest trust payoff value is achieved when both the lead vehicle and any other vehicle 
completely trust each other (i.e., when 𝑡1,𝑗 = 𝑡𝑗,1 = 1).  However, to justify this assertion, we must also show this is true 
when 𝑗 = 1.  If 𝑗 = 1, then max({𝑖, 𝑗}) = 𝑖.  Therefore, the payoff value for a pair coalition between 𝑖 and 𝑗 is: 

 
𝑣({𝑖, 1}) = 𝑡𝑖,1𝑡1,𝑖 �𝑖 −

𝑖 − 1
𝑡1,𝑖

� 
(50) 

 𝑣({𝑖, 1}) = 𝑖𝑡𝑖,1𝑡1,𝑖 − 𝑖𝑡𝑖,1 + 𝑡𝑖,1 (51) 

 𝑣({𝑖, 1}) = 𝑡𝑖,1�𝑖𝑡1,𝑖 − 𝑖 + 1� (52) 

Both (49) and (52) confirm that the highest trust payoff is achieved when both the lead vehicle and any other vehicle 
completely trust each other.  Therefore, 𝑡𝑖,𝑗 = 1 when the min({𝑖, 𝑗}) = 1 for 𝑖 ≠ 𝑗. 

Now, we analyze coalition formation with the second vehicle.  If 𝑖 = 2, then max({𝑖, 𝑗}) = 𝑗.  Therefore, the payoff 
value for a pair coalition between 𝑖 and 𝑗 is: 

 
𝑣({2, 𝑗}) = 𝑡2,𝑗𝑡𝑗,2 �𝑗 −

1
𝑡𝑗,2

−
𝑗 − 1
𝑡2,𝑗

� 
(53) 

 𝑣({2, 𝑗}) = 𝑡2,𝑗𝑡𝑗,2𝑗 − 𝑡2,𝑗 − 𝑗𝑡𝑗,2 + 𝑡𝑗,2 (54) 

 𝑣({2, 𝑗}) = 𝑡𝑗,2�𝑗𝑡2,𝑗 − 𝑗 + 1� − 𝑡2,𝑗 (55) 

The highest trust payoff that can be achieved with the second vehicle is equal to zero, and this only occurs when both 
vehicles either have complete trust in each other (i.e., when 𝑡2,𝑗 = 𝑡𝑗,2 = 1) or no trust in each other (i.e., when 𝑡2,𝑗 =
𝑡𝑗,2 = 0).  Any other combination of trust values will produce negative trust payoff values.  However, to justify this 



 

 

 

assertion, we must also show this is true when 𝑗 = 2.  If 𝑗 = 2, then max({𝑖, 𝑗}) = 𝑖.  Therefore, the payoff value for a 
pair coalition between 𝑖 and 𝑗 is: 

 
𝑣({𝑖, 2}) = 𝑡𝑖,2𝑡2,𝑖 �𝑖 −

𝑖 − 1
𝑡2,𝑖

−
1
𝑡𝑖,2
� 

(56) 

 𝑣({𝑖, 2}) = 𝑖𝑡𝑖,2𝑡2,𝑖 − 𝑖𝑡𝑖,2 + 𝑡𝑖,2 − 𝑡2,𝑖 (57) 

 𝑣({𝑖, 2}) = 𝑡𝑖,2�𝑖𝑡2,𝑖 − 𝑖 + 1� − 𝑡2,𝑖 (58) 

Both (55) and (58) confirm that the highest trust payoff that can be achieved with the second vehicle is equal to zero.  
Therefore, 𝑡𝑖,𝑗 = 𝑡𝑗,𝑖 ∈ {0,1} when min({𝑖, 𝑗}) = 2 for 𝑖 ≠ 𝑗.  To complete the proof, we simply state our assumption that 
each vehicle fully trusts itself, since it is impossible for a vehicle to diverge from a singleton coalition.  Therefore, 
𝑡𝑖,𝑗 = 1 when 𝑖 = 𝑗.  This completes the proof. 
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